Công Thức Tính Tổng Dãy Số Có Quy Luật

Bài tập về dãy số có quy luật

Việc tính tổng của một dãy số có quy luật thoạt nhìn có vẻ phức tạp, nhưng thực chất lại đơn giản hơn bạn nghĩ. Bài viết này sẽ cung cấp cho bạn những Công Thức Tính Tổng Dãy Số Có Quy Luật thông dụng nhất, giúp bạn giải quyết các bài toán một cách nhanh chóng và hiệu quả.

Dãy Số Cộng

Dãy số cộng là dãy số mà mỗi số hạng liền kề nhau hơn kém nhau một khoảng cách cố định, được gọi là công sai (d). Ví dụ: 1, 3, 5, 7 là một dãy số cộng với công sai d = 2.

Công thức tính tổng n số hạng đầu tiên (Sn) của dãy số cộng:

Sn = (n/2) * [2*a + (n-1)*d]

Trong đó:

  • Sn: Tổng n số hạng đầu tiên
  • n: Số số hạng
  • a: Số hạng đầu tiên
  • d: Công sai

Ví dụ: Tính tổng 10 số hạng đầu tiên của dãy số cộng 2, 5, 8, 11,…

Ta có: a = 2, d = 3, n = 10

Áp dụng công thức, ta có: S10 = (10/2) [22 + (10-1)*3] = 155

Dãy Số Nhân

Dãy số nhân là dãy số mà mỗi số hạng (trừ số hạng đầu tiên) bằng tích của số hạng liền trước nó với một hằng số q, gọi là công bội.

Công thức tính tổng n số hạng đầu tiên (Sn) của dãy số nhân:

Sn = a * (1 - q^n) / (1 - q)  (khi q ≠ 1)

Trong đó:

  • Sn: Tổng n số hạng đầu tiên
  • n: Số số hạng
  • a: Số hạng đầu tiên
  • q: Công bội

Ví dụ: Tính tổng 5 số hạng đầu tiên của dãy số nhân 1, 2, 4, 8, 16,…

Ta có: a = 1, q = 2, n = 5

Áp dụng công thức, ta có: S5 = 1 * (1 – 2^5) / (1 – 2) = 31

Một Số Dạng Bài Tập Về Dãy Số Có Quy Luật

Ngoài việc áp dụng trực tiếp công thức, bạn cũng có thể gặp một số dạng bài tập biến đổi như sau:

  • Tìm số hạng thứ n của dãy số: Dựa vào công thức tổng quát của dãy số, bạn có thể thay giá trị n để tìm số hạng cụ thể.
  • Xác định xem một số có thuộc dãy số hay không: Kiểm tra xem số đó có thỏa mãn công thức tổng quát của dãy số hay không.
  • Tìm công sai/công bội khi biết hai số hạng bất kỳ: Sử dụng công thức tính hiệu (dãy cộng) hoặc tỷ lệ (dãy nhân) giữa hai số hạng để tìm.

Bài tập về dãy số có quy luậtBài tập về dãy số có quy luật

Lời khuyên: Nắm vững các công thức tính tổng và đặc điểm của từng loại dãy số là chìa khóa để bạn giải quyết thành công các dạng bài tập liên quan.

Kết Luận

Hiểu rõ công thức tính tổng dãy số có quy luật là nền tảng quan trọng để giải quyết các bài toán liên quan đến dãy số. Hy vọng bài viết này đã cung cấp cho bạn những kiến thức bổ ích và dễ hiểu về chủ đề này.

Bạn có muốn tìm hiểu thêm về:

Hãy liên hệ với chúng tôi:

  • Số Điện Thoại: 0936238633
  • Email: [email protected]
  • Địa chỉ: 408 An Tiêm, Hà Khẩu, Hạ Long, Quảng Ninh, Việt Nam.

Bạn cũng có thể thích...